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Upwind Difference Schemes for 
Hyperbolic Systems of Conservation Laws 

By Stanley Osher* and Fred Solomon 

Abstract. We derive a new upwind finite difference approximation to systems of nonlinear 
hyperbolic conservation laws. The scheme has desirable properties for shock calculations. 
Under fairly general hypotheses we prove that limit solutions satisfy the entropy condition 
and that discrete steady shocks exist which are unique and sharp. Numerical examples 
involving the Euler and Lagrange equations of compressible gas dynamics in one and two 
space dimensions are given. 

I. Introduction. In this paper we consider numerical solutions of the initial value 
problem for hyperbolic systems of conservation laws 

p 

(1.1) wt + f(w)x=O, w(x, O) = 4(x) 
i=l 

with x = (x... ,xp)', and -xc < xi < oo for each i. 
Here w(x, t) is an m-vector of unknowns, and each flux function /(w) is a vector 

valued function of m components. The system (1.1) is said to be hyperbolic when all 
eigenvalues of all nontrivial real linear combinations of the Jacobian matrices 
Ai(w) = afi(w) are real. It is well known that solutions to (1.1) may develop shocks 
and contact discontinuities, even when the initial data are smooth. 

We shall first concentrate on the one-space-dimensional version of (1.1) which we 
rewrite as 

(1.2) Wt + f(W)X = 0, w(x, 0) = ?~(x), -x0 < x < x0, 

and which we assume is strictly hyperbolic- the eigenvalues of A(w) = grad wf are 
real and distinct. Multi-dimensional calculations will be done via a dimensional 
splitting technique discussed below. 

Among the numerical methods used to compute discontinuous solutions, those 
based on shock capturing have been most successful. In this technique the discon- 
tinuity is computed as part of the solution. This approach is based on the theorem of 
Lax and Wendroff [13], which shows that when a finite-difference scheme is in 
conservation form, then the jump conditions across discontinuities in the limit 
solution are satisfied automatically. The main advantage of shock capturing lies in 
its simplicity. The main drawback of most finite-difference schemes is that discon- 
tinuities are approximated by continuous transitions that, when narrow, usually 
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overshoot or undershoot, or when monotone, usually spread the discontinuity over 
many grid points. 

Another problem, even for certain commonly used schemes, is convergence to 
nonphysical solutions, e.g., solutions with expansion shocks [1], [8]. The addition of a 
certain amount of numerical viscosity may remove this difficulty [14] at the cost of 
spreading also the physical discontinuities. 

The numerical method we propose here involves upwind differencing. The idea of 
upwinding has been around for a long time. Our method will involve only a 
relatively simple three-point difference approximation to the space derivative in (1.2) 
and is an extension of an approximation derived by Engquist and Osher [1], [2], [3], 
for scalar conservation laws. The E-O scheme is in turn related to the Cole-Murman 
scheme used for the small disturbance equation of transonic flow [17]. Besides its 
theoretical advantages derived in the references above, recent computations per- 
formed at NASA Ames Research Center [7], with an implicit version of E-O, have 
demonstrated its computational advantages. In particular, very large time steps can 
be used, significantly reducing the computer time needed to reach steady state, as 
compared to C-M. Moreover, sharp shock profiles without overshoot were obtained 
bearing out the theory. Finally, in time-evolving problems, stable, physically correct, 
results were obtained for E-O in many cases where C-M went unstable. The time 
step could be increased by factors of thirty or more. 

The success of the E-O scheme for implicit calculations is largely due to the 
following fact: the numerical flux functions for E-O, viewed as functions of the 
unknown grid vector, are smoother than those for C-M. The E-O flux functions have 
Lipschitz continuous partial derivatives. The C-M flux functions are only Lipschitz 
continuous. Thus, since implicit methods are based on inverting operators using 
linearization, E-O is naturally much more robust than C-M. We shall expand upon 
this remark in the next section. However, we note here that the popular upwind 
scheme of Godunov [6], which like E-O is a monotone scheme, is only as smooth as 
C-M near the important shock points. Implicit calculations done at U.C.L.A., on 
simple test problems, indicate much greater robustness for E-O than for the 
Godunov scheme. 

Recently, we learned that Roe, [22], has given a new algorithm for constructing 
upwind schemes for hyperbolic systems. His algorithm and ours are somewhat 
related. However, in the scalar case, with f(u) = u2/2, Roe's scheme reduces to 
C-M. Thus, in general his scheme possesses stable nonphysical expansion shock 
solutions. Furthermore it will only be as "smooth" as C-M, making implicit methods 
with large step sizes problematic. 

The difference method we construct here will be given only for explicit one-step 
time differencing. Given the space differencing, it is fairly routine to extend our 
scheme to be implicit. We shall discuss this in future work. 

Our method is easy to program and we shall show analytically that it yields the 
following features: 

(1) Shocks which satisfy the correct jump conditions (because of conservation 
form). 

(2) Physically correct shocks, i.e., those satisfying an entropy condition. 
(3) Exact resolution of steady discontinuities (with at most two grid interior 

points). 
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(4) Uses the smallest number of boundary conditions, i.e., the effect of any 
nonphysical, (numerical), boundary conditions is minimal. 

In addition, the computational evidence indicates that the following property is 
valid: 

(5) (For steady problems) rapid convergence to steady state. 
In Section II we review the Engquist-Osher scheme for scalar problems and then 

construct our new scheme for hyperbolic systems of conservation laws (1.2). Thus 
the general algorithm is given in that section. We also state the main theorems there. 

In Section III we list the algorithms for compressible gas dynamics in both 
Eulerian and Lagrangian coordinates. It will be seen that our schemes, although 
simple, are indeed new. They involve various "switches" as described in Sections 2 
and 3. A multi-dimensional algorithm based on dimensional splitting is also given 
there. 

In Section IV we will give the results of various computations. 
Elsewhere, Engquist and Osher have obtained some global extensions of the main 

theorems for the potential equation of transonic flow [4]. Together with Mann they 
are extending this to multi-dimensions [21]. 

Osher has shown the utility of the scalar E-O scheme in obtaining approximate 
solutions to a wide class of nonlinear singularly perturbed scalar elliptic boundary 
value problems [20]. He also has obtained a simple multi-dimensional finite-element 
version of the scalar E-O scheme, with much theoretical justification, [18]. R. 
Sanders has proven convergence of the scalar one-dimensional, but variable grid size 
finite-element generalization of E-O. Reference [19] gives a survey of most of the 
recent work in this area using the approach of this paper, while [9] gives a rather 
general survey. 

We would like to thank Bram van Leer for his very helpful comments on the first 
draft of this paper. 

II. The General Algorithm and Theoretical Results. We begin by recalling the first 
order scalar E-O scheme developed in [1], [2]. Consider a nonlinear scalar conserva- 
tion law in one space variable: 

(2.1) Wt +f(w)X = 0, w(x,0) = 4>(x), -x < x < xc. 

The solution w(x, t) is approximated by a mesh function w on the mesh 
{(X, tn)) with xj = jAX, tn= nAt,j = O 1 ... , n = 0, 1.... 

The difference approximation in its explicit form, with wn approximating w(x1, tn), 
is 

(a) Wn+ = Wn - t(A+f (Wn) + Af (wn)) 

(2.2) W0A= D(XJ), j= 0, +15 +2_ 

(b) 
A 

sup if <l. 

Here we denote 
(2.3) A w (W.,,-wj) 

and for future use 

(2.4) D wj W 
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The auxiliary functions f+ and f are, respectively, the increasing and decreasing 
parts of f. 

(a) f+ (u) X(s)f(s) ds, 
(2.5) 0 

(b) fM(u) (I - (1X(s)) f'(s) ds, 
0 

where x(u) =1 X f '(u) > 0, X(u) 0 X f '(u) < 0. Thus, normalizing f(O) to be 
zero, we havef = f+ + f . 

When f is convex, the definitions (2.5) reduce to 

(a) f+ (u) = f(max(u, ui)), 

(2.6) (b) f (u) =f(min(u, u)), 

where u- is the "stagnation" or "sonic" point for whichf'(u) = 0. If f'(u) has a fixed 
sign, e.g., f' > 0 in the region of interest, then the scheme reduces to the classical 
upwind scheme 

(2.7) Wn+1 = W - At f(wn). 

Thus the scalar E-O scheme, in regions containing no sonic or shock points, is 
merely upwind (or downwind) differencing. The flux decomposition appearing in 
(2.2) gives a recipe for a "switch" in the direction of differencing near sonic or shock 
points. This "switch" is the basic ingredient of the scheme. See [9], [23] for a survey 
of other approaches. 

The resulting conservation form scheme (2.2)(a) is monotone if the CFL condition 
(2.2)(b) is valid. This means that viewed as an algorithm 

WJn+ I=G( ( Wn n, WJnI) 

the function G is a nondecreasing function of all its arguments. 
It has been proven that properties (1)-(4) of the previous section are valid for this 

scheme. In addition, for initial data in BV n L?? n L', the approximate solutions 
converge with a rate O((At)1/2) in the Ll norm, [11]. 

We note here that the steady shock property (3) is the one which makes the flux 
decomposition unique; see [4]. 

Combining (2.2) with (2.5) enables us to rewrite E-O as 

(2.8) j wx X(w) f( w)dw+ (1 X( w ))f'(w)dw 

This is the algorithm we shall generalize to systems. Let af(w) be the Jacobian 
matrix of f(w). We approximate 

(2.9) axf(w) 1 [( X(w)af(w) dw + 1 (I - X(w))af(w) dw]. 

The matrix x(w) and the paths of integration remain to be specified. 
Let the eigenvalues of af(w) be denoted by Xl(w) < X2(w) < ... < Xm(w) with 

corresponding right eigenvectors rl(w), r2(w),...,rm(w). Define T(w) to be the 
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matrix whosejth column is rj(w). It then follows that 

T-'(w)af(w)T(w) A(w) = diag{Xk(w)} 

X|(w) 0 0 

(2.10) 0 X2(w) ... 0 

0 0 Xm(W) 

We then define 

(2.11) X(w) T(w) diag{2 + ' sign(Xk(w))}T'(w) 

Thus we have 

x(w)af(w) = T(w)diag{max(Xk(w),0)}T-'(w) =(af(w))+ 

(22) (I - x(w))af(w) T(w) diag{min(Xk(w), 0)} T'-(w) (af(w)) 

which defines the "increasing" and "decreasing" fluxes in the vector valued case. 
The choice of the paths of integration in (2.9) significantly affects the properties of 

the scheme. The paths will be chosen in a natural way, so that the preliminary 
computations needed to construct the scheme are relatively simple. Specifically, 
construction of the path will be connected to classical techniques for solving the 
Riemann problem [12], but will be simpler. 

We denote the path connecting wj- 1 to wj by Fj (and of course Fj+ 1 connects wj to 

wj+ i). The curve F- is decomposed into m subcurves 
m 

(2.13) ri= U rk[ 
k= 1 

These subcurves are related to rarefaction or compression wave solutions of (1.2), 
and are defined through 

dw (k) r(() 
(4 d = r( WI(k) j for either 0 < s < S4) or 0 s k s 

w (k)(0) = W(k+1) 5() ) 

with w(m+?)(S)I ) defined to be wj- and w('(sj)) = w;. In other words, beginning 
at wj-, we obtain the curve Fm defined by w(s) such that for s between 0 and Smg 
dw/ds = rm(w), with w(0) =wl. Then at s = s U) we solve dw/ds = rmi(w) with 
w(O) = W(m)(S()). Repeating this procedure, we arrive at an m parameter family of 

end states w(s(') s 1,. ..,( i)). By the implicit function theorem, if I w;- wj- is 
sufficiently small, there exists exactly one such piecewise smooth curve connecting 

to w;. This follows since the Jacobian of the mapping w(sj),... ,S i)) at the 
origin is precisely the matrix {rm(wj-i),... ,r(wj- )}, which is, of course, nonsingu- 
lar. (By strict hyperbolicity, it is also clear that the mapping is a smooth function of 
the Sk-) 

Thus the 17, k= m,... , 1, locally foliate Rm, and there is exactly one desired 
curve Fi. 
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An important property of this choice of path is that the system "decouples" in the 
following sense: We have, by (2.14), 

(2.15) fX(w)af(w) dw = jfsV max(Ak(w(s)) O)rk(w(s)) ds 

Thus the full approximation to the space derivative is 

(2.16) +) 
+ fs min(k(W(S)), O)rk(W(s)) ds)j] 

k 

and our explicit one-step approximation to (1.2) is 

(a) wjn+I - wj [ (jx maX(Ak(w(S)), O)rk(w(s)) ds 

+ fsk min( k ( W(s)), 0) rk( W(S)) ds) j 

(2. 17)? 

j w x (, X(w)af(w) dw + j| -x(w))8f(w) dw) 

A~t (b) x~ sUPI kc I . 

It may appear that the ordering of the 1'/, forj fixed, is reversed. We begin at w,- 
with an m wave and end at Wj with a one-wave. 

There are natural geometric reasons for this ordering, which we shall discuss in 
detail in future work. We mention here that this ordering rules out overshoot in the 
two-point transition region between the constant states of a steady discrete shock, 
and makes the proof of Theorem 2.2 both possible and simple. This ordering of the 
paths has the effect of approximating a shock wave by separating the end states 
a bit in (x, t) space, then inserting a centered compression wave made up of 
m, m - 1,. .. 1 waves. This full solution is just about to coalesce into a single shock 
as time evolves in a positive direction. 

At first glance the scheme may appear difficult to work with. There are two 
obvious problems: 

First we must find the paths 1k, and next we must compute the integrals in closed 
form. For many physical problems, this procedure is quite simple to implement, as 
will be seen in Section 3. We proceed by explicitly solving the following equation for 
each k: 

(2.18) v4' rk(w) = 0, 
and we obtain (m - 1) independent solutions, the so-called Riemann invariants. We 
call them 4,k, v # k. For the equations of gas dynamics to be discussed later, they 
may be chosen to be simple algebraic functions of the m-vector w. 

We obtain parametric representations for the 'k, by requiring that 4'k(w) be 
constant for each v '# k, because 
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Next we consider the integral (2.15). For many physical equations (again includ- 
ing those discussed in the next section), each k field is either genuinely nonlinear, 
which means: 

(2.20) ds Xk(w(s)) = V,,Ak(W(S)) *rk(W(S)) 1, 

or linearly degenerate: 

(2.21) -5'dXk(w(s)) = VWXk(W(S)) rk(W(S)) O. 

In the linearly degenerate case, it follows that Xk(W(S)) is constant on 1`J, so 

(2.22) (af(w)) dw = {f(W (0)) -f(w(k)(0)) if Xk > 0 

~~' Jry j~~~~~o if Xk <O. 

In the genuinely nonlinear case, Xk is strictly monotone, decreasing if s(i) < 0 
increasing if s(i) > 0. Thus, there exists at most one point k(i) at which Xk(W(k)(k(j))) 

- 0. Call this point ij~(k) = wk(?V)), a sonic point. We then have four possibilities: 

w(k l)(0) if Xk(wk )(0)) > 0, 

-k~~~~ w - jkif Xk(w(0 ()) < 0, 

(2.23) J(af(w))+ dw= f(w) wk) Wk ) >0, rv W(k)~~~~w (0) if 
XJ(()0) 

iwkj if Xk(W(k)(0)) ? 0. 

The expressions for fr, (af(w))- dw are analogous and are easily obtained. 
Thus the space differencing (2.16), and the resulting one-step approximation 

(2.17), are easily computed in these very important cases. 
Remark 2.1. The difference approximation (2.17) is a first-order accurate con- 

servation form approximation to Eq. (1.2). 
Proof. We may rewrite 

X(w)af(w) dw + J+, (I - X(w))af(w) dw 

= A f(w1) + A+? (I - X(w))af(w) dw 

(2.24) 

A+f(w;) - A?+ x(w)af(w) dw 

= Aof(w) -A+J I af(w) dw, 

where A0 = (A+ + A-) and I af(w) I = (af(w))+ - (af(w))-. 
It is clear that the resulting scheme is in conservation form. To prove first-order 

accuracy, we must show that 

(2.25) A+J I af(w) I dw = O((Ax)2) 

for smooth functions w. 
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It is easy to see that 

(2.6)a f1I af(w) I dw = af(w)I 

awj-l ~ ~ ~ I=W =W 

aw.Jy af(W) I dwI =1 af(w) I . a wj_ =W =W 
Thus 

(2.27) A + Iaf(w)Idw - af(wj) I +\ w (wj + / wj12)_ 

The result is immediate. 
As a consequence of this, and the above-mentioned Lax-Wendroff theorem [13], it 

follows that, if a sequence of approximate solutions of (2.17) converges boundedly 
almost everywhere to a limit solution w(x, t), then w is a weak solution of (1.2). 

Weak solutions are not in general unique: solutions with expansion shocks are 
possible. In fact, such solutions do occur in a stable fashion as bounded limits of 
certain standard difference schemes [1], [7], [8]. 

In Roe's scheme [22] the integral term in (2.24) is approximated as follows: 

(2.28) 1r af(w) I dw ;zt I af(fvj) I A w, 

where w; is chosen so as to give the equality 
(2.29) A f(wj) = af(fj)A wj. 

In the scalar case with f(w) = w2/2, this is the Cole-Murman switching scheme, 
which has stable nonphysical shocks. Moreover, the expression on the right of (2.28) 
is only Lipschitz continuous in wj, wj 1, when wj, wj+ are such that f(wj) = f(wj+ ). 
The expression on the left has Lipschitz continuous partial derivatives everywhere, 
including at such points. This explains the superior robustness of E-O for implicit 
methods, found in [7]. 

Let us now assume that the strictly hyperbolic system of conservation laws admits 
an additional convex scalar conservation law. This means there exists a convex scalar 
function U(w) satisfying an additional conservation law: 

(2.30) a,u(w) + axF(w) = 0. 

Lax [12] has shown that for such systems the inequality in the sense of distribu- 
tions, 

(2.31) a,u(w) + axF(W) ? 0, 
is implied for any w which is the limit of solutions of 

(2.32) wt + f(w) x = -wXxx, > ?, 

ase]-0. 
Condition (2.31) is called the entropy condition, or the entropy inequality. 
The entropy condition is related to a geometric condition, called the shock 

condition, which is defined as follows. 
Suppose the weak solution w to (1.2) is piecewise continouus at a point of 

discontinuity. We denote the value of w on the left, respectively right, sides of the 
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discontinuity as follows: wL, wR. Such a point of discontinuity is a k-shock if both 
(a) the Rankine-Hugoniot relation 

(2.33) s(wL - wR) = f(wL) -f (wR), 

for s the speed of propagation of the shock, holds; and 
(b) there are exactly k - 1 of the characteristic speeds Xk(wL) <s and m - k 

speeds X k(WR) > S 

(2.34) Xkl(w ) <s <Xk(wL), Xk(wR) <s <Xk+l(wR). 

This is the shock condition for systems. Lax [12] showed for genuinely nonlinear 
characteristic fields, that, for weak k-shocks, the shock condition is equivalent to the 
entropy condition 

(2.35) s(U(wL) - U(wR)) - F(wL) + F(wR) < 0. 

Recently Mock [16] extended this equivalence by removing the hypothesis that the 
shocks be weak for a class of conservation laws, which includes all scalar convex 
laws, and a wide class of systems, including all those physical equations of Section 
III below. 

Let wL and wR be the values on the left and right corresponding to a linearly 
degenerate field. This time s Xk(wL) = Xk(wR), and the inequalities for such a 
k-contact discontinuity are 

(2.36) Xk (wL) <s = Xk(wL) = Xk(wR) < xk+l(wR) 

It is easy to see that for such fields, for weak k-contact discontinuities, the above 
k-contact condition is equivalent to the entropy condition 

(2.37) s(U(WL) - U(wR)) - F(wL) + F(wR) = 0. 

In order to state our first main theorem, we consider a semidiscrete time 
continuous approximation to (1.2) of the form 

atW. LAx kJo maX(Xk(W(S)),O)rk(w(s)) ds 

(2.38) + fSk +)min(Xk(W(S)) 0)rk(w(s)) ds)j 

wj(O) = 41(xj), j 0, ?1,... 

Our first theorem is 

THEOREM 2.1. Suppose wj(t) solves (2.38) and converges boundedly almost every- 
where as Ax -O 0 to w(x, t). In addition, suppose the quantity limAX.0(supj,t I A+ w(t) j) 
is sufficiently small and all the fields are genuinely nonlinear. Then the limit solution 
satisfies the entropy inequality (2.31). 

Next we present analytic evidence that our scheme gives excellent shock resolution 
in the steady case. Let wL and wR be the states on the left and right (of x = 0, say) 
for a genuinely nonlinear steady k-shock solution of (1.2). Then we seek solutions of 
(2.17) (or equivalently of (2.38)) which are independent of n (or of t) and approach 
wL and wR if j-- -oo and j -x o, respectively. These are called steady discrete 
shocks. 
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We have 

THEOREM 2.2. (i) Existence: Suppose I WL - WR I is sufficiently small and either (a) 
k = 1 or m, or more generally (b) there exist (m - 1) functions 4j(w) E C'(Q) having 
linearly independent gradients where the ball Q contains WL, WR, for v= 1,...,m, 
v # k, such that V,4'1(w) r,(w) Ofor all v, A with 1 v < k - 1, k < < m and 
with k + 1 < v < m, 1 < < k. Then there exists a class of steady discrete k-shocks 
giving a sharp profile in the following sense: 

wjW L forw j jo 
(2.39) L 

w; -w forj >jo + 1, 

with wjk(a), wjN,+I (a), a smooth one-parameter family of states separated by a unique 
sonic point as follows: 

(a) wko(a) is connected to WL = wkl via a curve 
Jro defined as above, but for which 

only rJ7o, ? . . , 17o0 are used, i.e., vo= {ujo}, v = 1,... ,k - 1, and moreover 
X ̂  2 0 on each I7o, V = k,k+ 1,. ..,m. 

(b) wjo+ (a) is connected to WR = Wj0+2 via a curve rio+2 defined as above, but for 
which only Jkjo+2, rkjo+A2,. ,Jio+2 are used, i.e., 17/0+2 = {ujo+1}, v = k + 1,... ,m, 
and, moreover, X,(w(s)) ?0 on each J'Jo?2 v = 1,2,. ..,k. 

(c) The curve F0o+? has the property that X,(w(s)) > 0 on each F/o+ ',v = m, m- 
I, . .. , k + 1; X,(w(s)) 0 on each rVio 

+ 1, = k -1, k -2,. . ., 1, and X k(W(S)) on 
jo/+0I decreases monotonically as w(s) goes from wjo to wjo +. The function Xk(w(s)) 

vanishes at w = w- and w- depends only on WL and WR. 

(d) The vector equation 

f(wjo) -f(wL) +f(wjO+I) -f(w) = 0 

is satisfied by every member of this family. 
(ii) Uniqueness. We consider only steady discrete shocks having certain weak 

monotonicity properties: X,(w) on r1 for v = k does not ever change sign, and if 

Xk(wj) 0, then Xk(Wj+l) 0. 
Under these circumstances, all steady discrete k-shocks are of the form constructed 

above, if supj I wj+ l-wj I is sufficiently small. 

We note that, without any of the above restrictions, steady discrete k-shocks must 
be eventually constant, i.e., w; w L if] j a, w;-wR if j b, for some a, b. This is 
the content of Remark 2.3 below. 

We also believe that our uniqueness result is valid under weaker hypotheses-see 
the scalar results in [3], [10]. 

We remark that the existence of the functions, 4', is assured if there exists a 
complete set of Riemann invariants. It is also true for the physically interesting 
examples discussed later. 

We also have a result for discrete contacts. In fact, we show that their resolution 
may be better than for shocks. 
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THEOREM 2.3. A class of discrete k-contacts exist if I wL - wR I is sufficiently small. 
They give an exact profile in the following sense: 

Any solution {wj)? with lim1j,, = wR, lim1 n= wL which satisfies the 
equation 

(2.40) _ w , f+Irk(w) dw, 
Jw 

where the kth field is linearly degenerate, and where Xk(wL) = 0, is an exact solution 

of (2.17) and (2.38). 

It should be noted that the Lagrangian formulation of nonisentropic compressible 
gas dynamics always has k = 2 as such a field. The Eulerian formulation has this 
property if ?+0 are stagnation points for the flow. 

Thus, we have analytic proof of the existence of steady sharp shock profiles. The 
numerical calculations indicate these shocks are stable (but not the contacts), and 
this was earlier proven in the scalar case in [3], [10]. 

We note here that Majda and Ralston [15] have, for a class of first-order 
conservation form approximations to (1.2), proven the existence of discrete shocks of 
general speed s such that (I\t/l\x)s is rational. Modulo some minor technical 
hypotheses, the principal condition they need, for existence of entropy condition 
satisfying discrete shock profiles, involves the linearization of the scheme around a 
constant state Wj = w for allj. The linearization is obtained by substituting Wj = w + 

evj and collecting terms of order e. 
For our scheme (2.17) this linearization becomes 

n1 =Un- l\At [r(1 - X(W))(af(W))((Un - Un) 
-' 

j 
Ax j'+ I 

(2.41) +X(W)(af(W))(Un - Un 

and the Majda-Ralston condition is automatically valid if the CFL condition 
(2.17)(b) is true. (However, one of their technical hypotheses is not satisfied for our 
scheme, but we believe their conclusion to be true, as it was for the E-O scalar case 
[3]-see also Jennings [10].) 

We conclude this section with the following remarks, which are the key to our 
uniqueness results, and which indicate why discrete steady shock profiles must be 
sharp. 

Remark 2.2. Suppose wj is a solution of (2.17) such that wjn+= wjn and wjn+i 
wjo+%1 for some jo. Moreover, suppose that the eigenvalues X, on each rJ for] - 

jo + 1, jo + 2 are nonvanishing and have the same sign for each j (but, in general, 
different signs for different v). Finally, suppose I wj- wjo l I +I wjo+I I-wjo + 

Wjo o+2 - Wjo I is sufficiently small. Then wjo = wjo + . 
Proof. We have for j]jo jo + 1, 

m 

0 = v (f max(X,(w(s)),0)r,(w(s)) ds 

(2.42) 
P=1 

+ |Sv min(Xj^(w( s)), O) rjw( s)) ds) 
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Let v0 be such that X,0 < O < X,0 + in all the integrals above. Then, by the mean 
value theorem, we know that forj = J' ]o + 1, 

m 

0 = s s/x(Wj)(r,(wi) + (I si 1)) 

(2.43) 
V=p0+ 

+ 2 sJ+'X,,(w + l)(r.Wj+ ) + o(i s/j l)). 
V= I 

Since the variation in Wj is small, the r, + 0(1 sv I) above are linearly independent. 
Thus all the factors slx,(wj) = 0. Since none of the X, vanish, it follows that all the 
sJ vanish. In particular 0 s = sO = = s]o+l, which means wjo = wjo+ 

As a simple consequence we have 
Remark 2.3. Any discrete k-shock must be eventually constant, i.e., there exist 

integers a and b, so that, if j a, then wj wL, and if j > b, then w; wR 

III. Algorithms for Compressible Gas Dynamics. In this section we apply the 
general scheme to compressible gas dynamics. As it turns out, the derivations are 
fairly simple and can be done in closed form. The discussion here will focus on three 
particular systems although there is ample reason to believe that the scheme can be 
applied to most of the systems occurring in ideal compressible flow. 

We also note that the schemes are constructed below even for large I wj- w1 . 
Our sole restriction is that cavitation does not occur on any of the r/, i.e., the 
density always stays positive. This is not unduly restrictive, as our numerical results 
have shown. However, cavitation does occur when two strong shocks intersect. 

A. One-Dimensional Nonisentropic Lagrangian Gas Flow. The equations are 

(3.1) [E [+ ] 0, 

where 

P= (y-1) (E - v2/2) 

and 
T = the specific volume, 
v = the velocity, 
p = pressure, 

E = the energy. 

Using the notation of the previous section, 

(3.2) w= [v and f(w) P 
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The Jacobian for this system is 

0 -1 0 

(3.3) (a) af(w)= T 2 T T 

T2 2 ) T 2 

and the eigenvalues of af(w) are 

2 = ?2 

( ) 3,1 = -+- 
T (E 2 ) 

The corresponding right eigenvectors are 

l= 7/ 1) (E 2 ) 1 

(3.4) r2| (E-v2/2) 
2 y)y 1) 

- 

r3 = j - -1 T2 (E 2E) I 

T 1 (F 2V) T T 1 (E 2) 

In view of (2.18) and (2.19), we begin by finding the Riemann invariants for this 
equation. These are easily obtained: 

(3.4) 0p2=v 3 p 
4i~jpr~, 4' (E - 2 22 

4i=?prY, '2 
V-- X 

2= 2V 

2 

E - .Y- 

We have defined the sound speed: c = ypi. 
This system of equations has genuinely nonlinear first and third characteristic 

fields, and linearly degenerate second characteristic field. Thus, from (2.14), (2.16), 
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(2.22), and (2.23), we have 

| (af(W)) +dW = 
f(Wj_2X3)- f(Wj- 1) 

(3.6) 

| (af(w)) dw = f(wj+1)- WJ+213) 

Here we have defined the intersection points 

W(3)(S3i= w(/3 = r3j n 17 and = wj(23 = 17 rf n J, 

for eachj. 
Moreover, 

(3.7) f(Wj]2/3)-f(Wj_1/3) |af(w) dw= 0 r2(w) dw = O. 

Thus, we need only to find either Wj-2/3 or Wj- 1/3, and then evaluate f(w) at either 
point, for eachj, in order to obtain the difference approximation. 

We must find the points of intersection r3j nF2 1 defined by (3.8)(a), (b) and 
r21 n1j defined by (3.7), (b), (c): 

(a) Pj-2/3Tj172/3 = Pj- iTjY I 

2 2 
Vj-2/3-y1 VYPj-213Tj-213 = Vj -1 

- 
C1_1. 

(3.8) (b) Vj11/3 =Vj2/3, 

Pj-1/3 Pj-213- 

(c) Pj-113Tj~-113 =PjTj 

+ 2 + 2 Vj_ 1/3 +y y-1 YPj- 1 3Tj- 1/3 = Vj + 
1 y C - 

A rather straightforward calculation gives us 

(3.9) (b) ,r(1-y)/2 | (Y ji )(V ?(p 1,)/12 + c; + cj- 

(3-9) (a) TJ-y2/ I (} + ( X )I/2y( X ) /2) J-y) 

(c) Pj-2/3 = PT-1/3 = 

(d) V_2/3 = P- 1/3 = (- I YPj-2/3j2/3)- 

Thus we have determined 

-Vj-2/3 
(3.10) f( Wj-2/3) = Pj-2/3 

(vp)j-2/3 

in terms of Tj-2/3- 
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The explicit one-step scheme is 

(3. 11) wjn 
+ = wjn - 

At 
(fWJ-2/3 ) f0(w<n-1) +f(WjnA) -f(WjnJ l3)). 

B. One-Dimensional Nonisentropic Eulerian Gas Flow. The equations are 

Pt + mx = ?, p, m =0, 0 

(3.12) m,+ ( p +(Y 1)(e 2 P _ x 

et+ ( e+(.Y 1)( 
e- 

P1 )) 

where p = density, m = momentum, e = specific energy. 
Again, using the notation of the previous section, 

m 
2 / M2\ 

(3.13) w=[mj and f(w) p 2 p 

ep 2(e +(Y-)(e-! pr)) 

The Jacobian for this system is 

0 1 0 
-y - 3 m2 

(3.14) (a) af(w)= 2 p(3y) 

- yme + ( )m ye 3(y-1) m2 ym 
- 2 p p 2 p2 p 

and the eigenvalues of af(w) are 

X31 = p _+ 2(-)(7- 1) - p- p 

(b) p p' 
m 

2= = U 
p 

(thus defining the velocity u). 
We also define 

p =(y-) e_P2 

(3. 15)p 
IP 
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The right eigenvectors are 

ye _ (y -1) m _ m 2()( p2 
p 2 2 p)(rn2) 

m 

(3.16) r2 2 

22 

2p2 

ye_(-) m e!i (Y(- - 
_ 

p3 2 7 p )(2p r ) 

ye _ y -( ) p2 + p j ( 2p 
P ~p2 p p 

The Riemann invariants for this system are 

+2 = r + + = U + l2 C 

(3.17) l2 =u, 42=p, 

xp3 = L, 
P 3 = U- 2 C. I p y~7-lI 

If we let u = v, p = 1/T, and e = E/I, we have the same paths of integration as 
in the preceding Lagrangian formulation. Thus the intersection points are as in (3.9): 

(a) p(Y~j,/-12 1( ,)( j I- u1)/2 + )j- pI(-l)/2 

(b) p(l-N-2 = (( )(u1 - 1/2 + + 1 P l 

(c) Pj-2/3 =P-1/3 P 1 - ( - I 

Pj2/(3yP-/ 

(d) Uj-2/3 = Uj_1/3 
= 

Uj - I 
- 

Cj - 
-2/3 

Again, the first and third fields are genuinely nonlinear, and the second is linearly 
degenerate. However, all three eigenvectors may have either sign; hence sonic points 
and switches are defined and used. We shall use the formulation in (2.23) for the 
second integral, and (2.24) for the first and third. 
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First we rewritef(w), using (3.12)-(3.15), 

pu 

(3.19) p +f2W )] 

Then we have 

(3.20) f(af(w))+ dw = fW(j-1/3)-fA(Wj-23) if Uj2/3 >0, 
0 '~~~~f Uj2/3 0. 

This simplifies to 

(3.21) J(af(w))+ dw =(Pji/3 - Pj-2/3)max(uJ-2/3 0) Uj!2:/3 

and of course 

(3.22) (af(w)) dw = (Pj+2/3 - Pj+l/3)min(uj+l/3,0)( uj+1/3i) 

For the genuinely nonlinear fields, we begin by finding the two "sonic" points, 
defined as follows. 

Let W- l be that value of w on I7, or its extension, through wj for which 

XI(w) = 0. The second sonic point, i->2/3, is defined to be that value of w on '3J, or 
its extension through w I1, for which X 3(W) = 0. Simple calculations give us 

(a) ( 1 )/3() / = ( Y - l) ( uj + 2cj/ (y - 1) P 

(3.23) (b) pl/3=p](Pjl/3/pJ) 

(c) Uj- 1/3 = UJ + j 1 -YP /3/Pj-1/3 

and 

(a) (Py-2/3)(Y )/2 = - - (jl) ( u 2j-2I/ (1 ) )peril)/2 

(3.24) (b) Pj-2/3 = Pj- I(Pj-2/3/Pj- 1) y 

2 (Y?-2/3 
(c) Uj-2/3 

= Uj1 _y 1cj y Pj-2/ . 

We now use Eq. (2.24) and the fact that XA is a decreasing function of p on F7. 
This gives us 

Wj 'if Pj < Pj-1/3, 
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and 

Wj+ if j Pj+2/3 y 

w+2 if pj+ l < ->23 

(3.26) (af(w)) dW = f(W) f Pj2/3 

Wj+2/3 f Pj+2/3 - Pj+2/3 

Wj+2/3 if Pj+2/3 < Pj+2/3 

Since X3 is an increasing function of p on J3', (2.24) gives us 

Wj-2/3 if Pj-2/3 > Pj-2/3 

Wj-y2/3 if Pj-2/3 < Pj-2/3' 
(3.27) ](af(w)) dw = f(w) 

3Y, W-jI if pj-1l > Pj-2/3' 

wj-2/3 if s 2/3 ? 

Wj+ 1/3 if PJ+1I3 S pj+ 1/3, 

W-j+ I1/3 if pj+ 1/3 - 
-Pj +I/ /3 

(3.28) J+(aw(w))y dw =f1(w) 

W-j+ I1/3 ifpj j+ I1/3 - 

In the last four expressions we use the form (3.19) to define f(w), and (3.18), 
(3.23), (3.24) to define W-1/3, Wj-11/3, W-2/3, Wj-2/3* 

We may now use (3.25)-(3.28) to write the explicit version of our scheme: 

(3.29) wjn+ = At( A (Jrjaf(W))?dwL+ (af(w)) dw)) 

C. Two-Dimensional Isentropic Eulerian Gas Flow. The equations are 

Pt + 0x + Ty = 0, 

(3.30) a~-t+ (- + P) + (-)=?, 

(3.30) ~ ~ T + (P)X( P ) y 

where p = density, a = x-momentum, T = y-momentum, p = kpy = pressure. 
The system is of the form 

(3.31) wt + (w)X + g(w)y = 0. 

We incorporate the method developed in this paper via dimensional splitting and 
apply successively the following schemes: 

a) Wn+2 = Wn _ _ (| J (f(a(W )) d + Wk (af(W))dW) 

(3.32) =|k 

Wn+ = 

n+1/2 - L Jvt k+<2(())dw + ( dw)w (b) Wik Wik A ~~wn+1/2 / 
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We used dimensional splitting in order to facilitate our computations. In future 
work concerning implicit time differencing, we shall show its importance. Here we 
could have as easily done the problem directly. 

In order to obtain (3.32)(a), we need the Jacobian 

0 1 0 
2 2 

(3.33) af(w) = | p+Pkl 
UT T U 

p2 p p 

and its eigenvalues and eigenvectors 

X-=F- ykpy =u-C, 

(3.34) 2 = - = U, 
p 

X3= + jykpY'l =u+c 
p 

(thus defining u and c), and 

1~~~~ 
- - ykpy' 1J + Fyk py 

r,= P r2 =0)j r3= P 
T T 

p p 

The Riemann invariants for this dimensionally split equation are 

2 U+y_l C, 3 = V, 

(3.35) C +2 U 

2 
{X3 U- lC, 32= V 

(thus defining v). 
The first and third fields are genuinely nonlinear, while the second is linearly 

degenerate. The intersection points are determined by 

py- I/2j= Cj 1/3 = Cj12/3 = Kyp5 7j-2/ 

(uY (Uj-U_) + 2c (C+ Cj I), 

(3.36) 1 1 

Uj_lx3 = Uj-2/3 =2(Uj + Uj_1) + y-i (c - 

Vj_113 = Vj, Vj-2/3 = Vj-1. 
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Moreover, 

fr(af(w))+ dw = fW(j-3)AWj-2/3) ifUj2/3 >0, 

(3.37) 0 
( 

max(U.-2/3, 0)Pj-2/3 |1 

and 

(3.38) Jr,(af(w)) dw = min(uj+ l/3, 0) Pj+ 1/3( 

We again define i->2/3, j- 1/3 to be the sonic points on F3 or its extension, and 
]7, or its extension, respectively. A simple calculation gives us 

1(y-)/2 =- = y I + 2 

Vj- 1/3 =VJ 

(3.39) K ~~/)1)/2 = 23=- - - 1 + 21 
-Uj-2/3 =AY/ (- -2/3 ) = Cj_213 =j I } +y+ Cj_ ,, 

Vj-213 =Vj-1. 

Then, as in (3.25)-(3.28), we have 

if pj <PJl Wji+P/ if pj < 1j/3, 

W-j 1/ f pj > j1/' 

(3.40) J+(af(w)+ dw =f(w) . _ rl ~~~~~~Wj_ 1/3 f Pj- 1/3 S< Pj- 1/3 

Wj-j 1/3 ifPj- 1/3 Pj- 1/3 p 

Wj+ I P+if PJ+2I > P2/3' 

w-i+2/3 if Pj+?2 < P}2/3' 

Wj+2/3 if P-2/3 > Pj+2/3, 
(3.41) f+ (af(w))- dw =f(w) 

Wjy+2/3 ifPj+2/3 Pj+2/31 

wj_2/3 if Pj>2/3 Pj-2/3' 

Wj-2/3 if Pj-2/3 > Pj-2/3, 

(3.42) |(af(w)) +dw=f(w) 
Wj2 

. 
if 

_-/ 

j23 

r3 ~~~~~~Wj_ I if Pj- I > Pj-2/3 > 

Wj-_2/3 ifp-l<Pj-2/3, 
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Wj+ 1/3 if Pj+1/3 < Pj+1/3' 

W.+ 1/3 if Pj+ 1/3 >~ Pj+ 1/3, 
(3.43) f (3f(w))- dw = f(w) 

P3~~~~~~W 

W~j+ 1/3 if pj > j+ I/3. 

Here we have used (3.36) and (3.39) to define Wj- 1/3, Wj- 1/3' Wj-2/3 and Wj-2/3. 
We insert (3.40)-(3.41) into (3.32)(a) in order to obtain our first splitting step. 
The Riemann invariants and eigenvalues for the system approximated in (3.32)(b) 

are 

v+y2 c, u, v-c, 

(3.44) 2 C= , 2 = V, 

1 V-y- C, 4'3=U, X3=v+c. 

The intersection points are (using the indexj for the discretey variable): 

- 
-y 1)_ y- 1p(y- ) 

Sp-Y~j7- /)g = Cj_ 1/3 = 
Cj-213 =Xj-=2/3/ 

= -Y 
I 

(i vj-vj ) + 
I 

( ci + cj_ ) 
(3.45) 41/ 2iV~ 

Vjf 1/3 = Vj-2/3 = 2 + y 
I 

1 (c1 -cj) 

Uj-1/3 = Uj, Uj12/3 Uj- I 

As usual, 

,(ag(w)) +dw 
f 
g(Wj_113) 

- 
g(Wtj2/3) 

if Vj2/3 > 0, 

J\g~~wJJ ]~~0 if Vj-2/3 ?0,l 

(3.46) 0 
( max(VJ-2/3,0)PJ-2/3( VJ -V!_I) 

(3.47) f| +1Pg(w)) dw = 
min(vj+1/3,0)Pjl/3 vij+i Vj) 

The sonic points are defined by 

1/3 = 7 (Pj- 1/3) / = Cj_ 1/3 = + 1 2 

(3.48) C /Uj313 
= 

Uj- 

Vj-2/3 VK ( 2P3-2/3= 2/3 -y + 1 ViI + 2 1 

Uj-2/3 uj_l. 

Finally, we have the usual expressions for frj3(ag(w))+ dw, obtained from 
(3.45)-(3.48), with g(w) replacing f(w), and the new values of Wj-1/3, Wj-2/3, 

j_-1/3' 'j-2/3 replacing those used in the x sweep in (3.40)-(3.43). We substitute 
into (3.32)(b) and complete the algorithm. LI 
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IV. Proofs of the Main Theorems. 
Proof of Theorem 2.1. We begin by multiplying (2.38) by p(xj, t)U(wj)Ax, with p 

a nonnegative test function having support in t > 0. We sum overj and add 

p(XJ, t)A, F(wj) = 2 p(xj, t) | w u(w) af(w) dw 
r+1 

(using the fact that Fw = Uwaf). 
This gives us 

p(xj, t)x at U(wi) + D+ F(wj)) 

2 p(xj, t)f (U(w) - UW(wj))(af(w)) dw 
rJ+I 

(4.1) + 2p(xj, t) f (Uw(w) - Uw(wj+))(f(w))+ dw 
rJ+I 

+ 2 (p(xi, t) - p(xi+,, t)) f (UW(w+ 1))(af(w)) dw. 
rJ+I 

Now integrate and sum by parts on the left side of (4.1), and then let Ax -O 0. The 
Lebesgue dominated convergence theorem tells us that the left side of (4.1) ap- 
proaches -JJ (ptU(w) + pxF(w)) dx dt. Thus we need only show that the three 
expressions on the right have a nonpositive sum. 

It is easy to see that 

(4.2) Uw(wj+ 1)(af(w)) dw < K(uj, uj+ )wj+ -wj, 
J+ I 

where we shall always denote as K any uniformly bounded nonnegative function on 
compact sets. 

Again, using the Lebesgue dominated convergence theorem, we see that the last 
term in (4.1) vanishes as Ax -O 0. 

We now consider the first term above. We may rewrite 

(4.3) Uw(w) -UW(W') =t Uww(v) dv. 

Here the path FJw+ denotes that part of Ij+ which begins at Wj and ends at w 
(which, we recall, is on +I). 

Thus, as an iterated integral, we may rewrite (dropping obvious superscripts for 

st) 

f (U(w) - UW(wj))(af(w))- dw 
,J+ 

(4.4) = z 2 f (f UWW(w(s))ri(w(s)) ds) min(X,(w(t)), O)r,(w(t)) dt 

+ |(UWW(W(S))r'(W(S)dS) min(AX,(w(t)), O)r,(w(t)) dt, 
IL=M m0 0 
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and similarly 

f (Uw(w) - Uw(wj+))(af(w))+ dw 
rJ+I 

(4.5) = - f|(f UWw(W(S))r(W(S)) dS) max(X,(w(t)), O)r,(w(t)) dt 
I.L=M V=1 0/ 

- m JS( j ( U U (w(s))r,,(w(s)) ds) max(X,A(w(t)), O)r,(w(t)) dt. 

Adding the last two equations gives us 

f (UW(w) - UW(Wj))(af(w))- dw +J (Uw(w) - Uw(w+))(af(w)) dw 

(4.6) 1 |dt[f ds(Uww(w(t))r,(w(t))) Tmin(X,(w(t)), O)r,(w(t)) dt 

+ f iL~(Uw(w(t))rL,(w(t))) T(-max(XA(w(t)),O))r,(w(t))] + R. 

Here the remainder term R simplifies because of the following observation: 

(4 7) (r,)TUwwrkO= if 1 k. 

Proof of 4.7. It was shown in [5] that Uwwaf is a symmetric matrix. Thus 

(4.8) ..Xkr,TUwwrk = riTUww(af )rk = ((awf)rw)TUwwrk = rTUWWrk= 

since Xk # XIl 
Thus, a typical term in the remainder may be estimated 

|S| JSv(Uww((s))rv(w(s)) -Uww(W(t))r(W(t)))T 

(4.9) X min(X,A(w(t)), O)r,,(w(t)) dt 

Ks (sE, I + IS,,1) I s, I I S"Isup IXI, I , 

while the other terms in (4.6) can easily be shown to be estimable by 

-K E inf I XI,s2. 

Thus, if none of the eigenvalues XA(w(t)) vanish in a neighborhood of length 
O(sL) of the appropriate integrand, the expression on the right of (4.6) is negative, 
given sufficiently small I A+ Wj I . 

Suppose, on the other hand, y0 is a genuinely nonlinear field and Ap0 vanishes 
within length 0(I SAO l) of the appropriate integrand. Then the first terms in (4.6) are 
estimable by 

(4.10) -K 2 inf I X2 s,L-K oIsl0I. 
tLto 

Thus, the desired inequality is of the form 
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for cl, C2 positive and fixed, and 0 -- I s,, s ' < E for some e sufficiently small. But 
the inequality (4.1 1) is valid unless both 

(a) s,0?C2(5 2 +1s,.lS,i0l), 

(4.12) Ib S" I<C2 SO (1cl I Syo)I I I c \ 

It is easy to see that for sufficiently small e these inequalities are incompatible. El 
Proof of Theorem 2.1. The following equations are easily seen to be equivalent to 

the existence of a steady discrete k-shock solution to (2.38) of the type defined in 
(2.39) 

(a) 0 = (af(w))u dw, 
r Jo 

(b) o =| (af(w))+ dw + (af(w))y dw, 

(4.13) Jo JO l 

(c) o = (af(w))+ dw +J (af(w))- dw, 
0J+1 I y1 +2 

(d) o = (af(w))+ dw. 
Jo+2 

These four equations are not independent. If any three are valid, then the fourth 
follows automatically. In general, if we have a steady solution, except perhaps at one 
pointj Iil, to any consistent approximation in conservation form to (1.2) satisfying 
w_* w L, WR as j-* -x, oo with f(wL) = f(wR), then the steady equation is also 
valid at that point]j ]l; see [10]. 

We must merely verify any three of (4.13)(a)-(d). 
Now we require wjo to be any state which can be reached from wL via an m to k 

wave along a path of the type 'kO = Uum I J'jo mentioned in (2.13), (2.14), with the 
restriction that F? = F=rk?l= {W). This gives us an (m - k + 1)-parameter 
family of possible end states wjo(so, sJo l,. .. ,sko). If the I sio I are sufficiently small, 
then (4.13)(a) is automatically valid, since each X., for v = k,... ,m, is nonnegative 
on vJo. 

We next require wjok+ to be any state which can be reached from wR via a 1 to k 
wave along a path of the type Fjo+2 = UFMl J7o2 with the restriction that fmo?2 

+2 = ***=rkj++l2 =wjo+ 1. This gives us a k-parameter family of possible end 
states wjo+1(sJo?2,... I,so 2). Again, if the I are sufficiently small, then 
(4.13)(d) is automatically valid since each AX ?0 on 1Pj7+2 for a = 1,...,k. 

Finally we connect wj. to wjo+Il along jo?+ l. We claim to be able to do this in such 
a way that each A,, is of one sign on Fjo+' except Ak which changes sign on 7o +?1 

This sign change occurs only once, by genuine nonlinearity. To prove this, for small 
I wL - wR I, we note that wL is connected to wR along a k shock, and, by Lax [12], 
the curve of k rarefactions through uL has second-order contact with the curve of 
k-shocks. Thus equation (4.13)(b) becomes 

(4.14) 0 = f(Wo)- Af(wL) + (Wj0+1) -f(W ), 

where w- is the unique (sonic) point at which Ak(u) vanishes on kJo? 1* 
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There are two obvious solutions to (4.14) subject to the above conditions. One is 
wjo = wL, wjo+I = w, and the second is wj = w, wjo+I = W . Either solution corre- 
sponds to the situation where wL is connected to wR by a single curve of the usual 
type. Moreover the eigenvalues X,, are all of one sign on the curves Fr, except Xk 

which vanishes at the unique point w on Fk. Then the single point of transition is 
either wjo+ I or wj1. 

Now we claim that the sonic point w- depends only on wL and wR, not on the 
choice of wjo and wj+ I. 

To prove this, we use our hypothesis and define m - 1 functions with linearly 
independent gradients in a neighborhood containing w L and wR, as follows. Let 

(Pk+l(w),...,(p.(w) be such that vw(pp * r, 0 if 1 < ,u < k and TI(w),...,Pk_l(w) 
satisfy vw,, * r (w) 0 if k < y < m. Let w be any point on rkfo? 1. 

Then Tp,(wL) = ,p(w) for v = 1,...,k-1, and ,p(wR) = p,(w) for v = k + 
,...,m. These two manifolds intersect along a curve containing J7o+'. This curve 

thus depends only on wL and wR. 
Along rkjo+l, we have dXk(w(s))/ds = VwAk * rk 0# ?, so W-, the sonic point, is 

uniquely determined. 
To connect wjo to wjo+Il along fio+ l we obtain an equation 

0 = iy 0+ I( Sm? y _s I, s .o . ; S+ 1, Sio+ + ...+11 s s...,S o+ 1 ) 

(4 .1 5) -0 
= 

j+ I ( mk +- 2 o 

Consider (4.14) and (4.15) together. This gives us a system of 2m equations in 
2m + 1 unknowns. We view Sj0+2 as the independent variable. 

We can write the system of equations as 

(4.16) H(sios Sio 
+ s , So+ 1 oo+ 

J+2 sfo+2; 
So+2) 

_ 
0. * m m-1 m ?m-1 I f -I 

One solution is obtained by taking all the above sJo to be zero which corresponds to 
letting wj = wL, and fixing wjo+ = w-, which corresponds to letting sio+l = 

l= * **= s,io4' = 0. Also ?o+1, , and SJo+2. .. sio+2 are fixed so that 
w- is connected to wR at these values k?2... ,'SI 

By the implicit function theorem, we need only show that the differential of H 
with respect to the 2m dependent variables is invertible at this fixed point. It is easy 
to see that the 2m X 2m matrix of the differential is 

(4.17) Am(u1)rm(uL) Ak(uL)rk(uL) 0 0 AkIk(u)rkI1(u) Ai(u)rl(u) 

L rm(uL) rk(uL) rm( ... rl(i) -rk l(u) -rl(uI) 

and hence is invertible. 
Thus we have proven existence of the one-parameter family of steady discrete 

shocks. 
The proof of the part of this theorem just completed, depends heavily on the 

ordering in k of the subcurves, 17. We shall show in the future that a reordering 
must lead to overshoot. Here we merely show the difficulties which would occur in 
the preceding proof if we do reorder the curves. We take the case m = 2, as an 
example. The only possible reordering is a reversal: 1F7 goes through wj_, 17 
through wj. 
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Let wL, wR, be the left and right states for a weak one-shock. In the proof just 
completed, we connected wL to wR via a (small) two-wave and then a (relatively 
large) one-wave, so that the sonic point w- lies on the one-wave. A steady discrete 
shock, with one point of transition iw = wj., was then shown to exist. Finally, a 
perturbation argument gave us our desired result. Suppose we proceed analogously 
with our new path, connecting wL to wR along a one- and a two-wave, with w-, the 
new sonic point, lying on the one-wave. We cannot, in general, let any point on this 
composite wave act as wjo. For if wjolies on the two-wave, then (4.13)(c) implies that 
f( wR) =( wj.), which is false. If it lies anywhere else on the wave, then (4.13)(c), the 
mean value theorem for integrals, and the linear independence of the eigenvectors r1 
and r2, imply that wL is connected to wR by a single one-compression wave. This is 
false in general, and false for the equations of compressible gas flow. 

This argument shows that the proof just completed would become more difficult 
with any reordering. 

Next we discuss the uniqueness of these steady, discrete, shocks. Remark 2.3 tells 
us that there exist integers a and b such that, if j < a, then wj wL, and if j > b, 
then w; R 

Let io be such that Xk(wj) > 0 for j < jo, and Xk(Wjo+I) < 0. It follows that 
j-WL for] < o -1. Then the first nontrivial equation to be verified is 

k-I 

(4.18) 0 = (af(w))Ydw= - f min(XA(w(s)),O)rj(w(s)) ds. 

By the mean value theorem for integrals, it follows that sio = s = S , and 
hence wjo is connected to wL along an m to k wave as described in the construction 
of discrete shocks. The next equation to be verified then becomes 

0 = f(wjo) 
- f(wL) + m J nin(X(w(s))o0)r(w(s)) ds 

(4.19) v=10 
- 

f(Wj") - f(WL ) + f(Wjo+ I )-fw) 

with iw- the unique point on the k wave at which Ak vanishes. 
By our hypothesis and the remark above, it follows that wj-WR for j jo + 2. 

Thus the last nontrivial equation to be verified is 
m 

(4.20) 0 fSPmax(AX(w(s)), 0)r,(w(s)) ds 
v=k+l 0 

which implies in the usual fashion that wjo I is connected to wR via a k to 1 wave, as 
in the proof of existence. 

Thus all solutions of this type solve (4.16). O 
Proof of Theorem 2.3. The following equations are easily seen to be equivalent to 

the existence of steady discrete contact discontinuity solutions of the desired type. 
For each], 

0 = f(af(w)) dw + (df(w)) dw 
(4.21) 

fmax(Xk(w),0)rk(w) dw + f min(Xk(w),0)rk(w) dw. 

This is valid, since Ak =0, as a consequence of our hypothesis. 
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V. Numerical Examples. Numerical results were obtained through computer 
implementation on the UCLA IBM 3033. We first discuss results for 0-speed 
discontinuities. We have three examples: 

1. (Figure 1) 0-speed shock-Euler equations I-D nonisentropic (p component). 
2. (Figure 2) 0-speed contact-Euler equations l-D nonisentropic (p component). 
3. (Figure 3) 0-speed contact-Lagrange equations l-D nonisentropic (T compo- 

nent). 
Although the theory of steady discontinuities given above was only local, our 

scheme was successful for large discontinuities, as seen below. 

2.0 

p 
(dens ity) / 

1 . 0 ; - - V ~~~~~~~~~~~~~~Lx = .05 

t =0 At 
= .02 

t 2 (100 iterations) 

.0 .1 .2 .3 .4 5 6 .7 .8 .9 1.0 

FIGURE 1 

Euler equations- 1 D nonisentropic 
0-speed shock 

(Initial data is steady solution with random noise perturbation) 

p (density) 

1.0 

---- t 0 Ax= .05 

-.o----o- 0t = .1 (20 iterations) lt = .005 

o data points Speed of contact = 0 

.0 .1 .2 .3 .4 .5 .6 .7 8 .9 1.0 

x 

FIGURE 2 
Euler equations- 1D nonistentropic 
0-speed contact discontinuity 

(Initial data is steady solution) 
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X (specific 
volume) 

1.0 O =:a r 
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*5 
^ _ ^ ^ ' 

~~~~~~~~~~~~At = .005 
t= 0 

t = .1 (20 iterations) Speed of contact = 0 

0 data points 

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

x 

FIGURE 3 

Lagrange equations- ID nonisentropic 
0-speed contact discontinuity 
(Initial data is steady solution) 

2. 0 _ __ 

p 
(density) 

1.0 

- True solution at t = .75 = .05 
At = .01 

Numerical solution at t = .75 
Shock speed = 1 

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

FIGURE 4 

Euler equations- ID nonisentropic 
Moving shock 
(Initial data is that of moving shock with random noise perturbation) 
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(density) 

_____ =c0 .05 
True solution at t = .1 

-o--o- Numerical solution at t = .1 A t = .005 

Speed of contact = 2 

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 
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FIGURE 5 
Euler equations- ID nonisentropic 
Moving contact discontinuity 
(Initial data is that of contact with no perturbation) 
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Numerical solution at t = .75 

Shock speed = -1 

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

FIGURE 6 

Lagrange equations- ID nonisentropic 
Moving shock 

(Initial data is that of moving shock with random noise perturbation) 
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In cases 2 and 3 the initial data given was that of the steady solution. In the case 
of the 0-speed shock,however,the initial data was a perturbation of a steady shock as 
seen in Figure 1. In all three cases the scheme is seen to yield sharp profiles with the 
profiles for the contacts being exact (a property of this scheme). Further the results 
in Figure 1 indicate stability for shock profiles as the perturbation is seen to settle 
down to that of the steady solution. 

We next display scheme performance with respect to moving discontinuities. Here 
again are three examples: 

1. (Figure 4) Moving shock-Euler equations 1-D nonisentropic (p component). 
2. (Figure 5) Moving contact-Euler equations 1-D nonisentropic (p component). 
3. (Figure 6) Moving shock-Lagrange equations 1 -D nonisentropic ( component). 
The initial data given in each case was two constant states (WL and WR) chosen so 

as to generate the desired moving discontinuity. In the two shock cases perturbations 
similar to those shown in Figure 1 were applied to the initial data. The results in the 
figures are then the numerical solutions after a large number of iterations plotted 
against the analytic solution. They tend to indicate smearing. This smearing occurs 
over a range of 5-7 points. This is not surprising, since all first-order upwind 
schemes are highly dissipative away from sonic points. 

Next we consider the scheme in two space dimensions. We take a discontinuity 
which is oblique with respect to the x and y coordinate axes. The scheme was 
implemented for the 2-D isentropic Euler equations. The scheme was given as initial 
data a steady shock oriented at various angles with respect to the x-axis -0o, 15?, 
300, 450. We prescribe numerical boundary conditions which are the exact values of 
w for such a skew-steady shock. After 20 iterations, (t = .1 seconds), the degree of 
profile sharpness that was preserved was viewed and is displayed in Figures 7,8,9 
and 10. In the left half of each figure is shown the profile at t = 0 while the right 
half displays the profile after the 20 iterations. The results are digitized and the 
following table provides the appropriate key: 

Digit Value of p 

0 .50 ?p < .55 
1 .55 p < .60 
2 .60 p < .65 
3 .65 p < .70 
4 .70Op<.75 
5 .75 p < .80 
6 .80Op<.85 
7 .85 p < .90 
8 .90p <.95 
9 .95 p < 1.00 

The figures demonstrate a good degree of profile sharpness being maintained for 
all orientation angles. Indeed within any row or column the number of grid points 
taking digital values strictly between 0 and 9 is at most 5 and often 4 or 3. Moreover, 
this number is at most 2 in the direction normal to the shock. 
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FIGURE 8 

Euler equations 2-D isentropic Shock orientation angle -150 
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FIGURE 9 

Euler equations 2-D isentropic Shock orientation angle -30? 
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FIGURE 10 

Euler equations 2-D isentropic Shock orientation angle -450 
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FIGURE 11 

Euler equations-2D isentropic 
Shock moving at 450 angle s 1.7 

Profile of p(x, y) along line x = y 

We also ran the 300 shock case for 100 iterations with no deterioration in profile 
sharpness. (Not displayed here.) 

Two further cases were run for the 2-D Euler equations: 
1. (Figure 11) Euler equations-2D isentropic shock moving at 450 angle, shock 

speed 1.7. 
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FIGURE 12 

Euler equations-2D isentropic 
Shear flow at 450 angle 
Profile of a(x, y) along line x = y 
a = pu is the x-momentum 

2. (Figure 12) Euler equations-2D isentropic shear flow at 450 angle. 
In the top half of each figure is shown a cross section of the profile along the line 

x = y both at t = 0 and t .1 (20 iterations). In the bottom half is shown the view 
when looking straight downward again at t = 0 and t = .1. 
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Neither the shear flow nor the moving shock appear to enjoy the same sharpness 
as the steady shocks (Figures 7-10). After the usual 20 iterations both displayed a 
fair degree of smearing. 

Finally we discuss scheme stability as a function of the Courant number. In this 
regard we consider again the 0-speed shock case of Figure 1. As before, the initial 
data was that of the steady solution with a perturbation applied. Five cases were run 

((At/IAx) = .1,.2,.4,.8, and 1.6). The scheme showed to be stable for 100 itera- 
tions for the cases A = .1, .2, and .4, but was unstable for A = .8 and 1.6. According 
to linearized stability theory the theoretical range for the scheme to be stable is 

A s l/p(A) where A is the Jacobian of f. p(A) for this case turns out to be > 1.65 
which translates into X s .61. Thus the numerical results agree with the theory. 
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